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A Variational Free-Lagrange Method for Shallow Water
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This article presents a variational free-Lagrange (VFL) method for rotating shallow water. This method was first derived by
Augenbaum (2) who discretised Hamilton’s action principle with a free-Lagrange data structure. The novel feature of our
approach is to exploit the geometric structure preserved by the VFL method to the effect of conserving energy over long-time
simulations. Numerical results demonstrate this property and motivate the extension of this approach to other variational
formulations of climate models.
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1 Introduction

The variational approach The derivation and analysis of conservative numerical methods for global climate modeling is a
challenging and active area of research. The traditional approach to deriving such methods requires the numerical analyst to
exercise some level of their own bias. To remedy this and systematically derive the numerical method from a conferred math-
ematical understanding, Salmon (1) pursues thevariational approach for geophysical modeling. The power of the variational
approach rests upon Noether’s theorem which states that each continuous symmetry of Hamilton’s action principle exhibits a
corresponding conservation law. Consequently, the numerical analyst need only choose a suitable discretisation of Hamilton’s
action principle, with the confidence that not only will the resulting semi-discrete equations of motion preserve geometric
structure, manifesting in energy conservation, but that these equations will conserve additional quantities corresponding to the
symmetries of the discrete action principle.

Voronoi diagram Following (2), we firstly outline a variational free-Lagrange (VFL) method for rotating shallow water.
A distinguishing feature of the free-Lagrange method is theuse of a Voronoi diagram to represent the layer thickness. The
Voronoi diagram is attractive from both a practical and theoretical perspective. Firstly the approach is completely free from
mesh-tangling problems (see 3) which compromise the performance of many ofthe mesh-based Lagrangian methods. Addi-
tionally, (4) shows that the corresponding discrete Hamilton’s action principle permits translational and rotational symmetries
and hence respective linear and angular momentum conservation laws.

Symplectic integrator Our contribution is to exploit the symplectic structure preserved by the VFL method by using a
symplectic time-stepper (see 5, for a review of symplectic methods for particle methods). We demonstrate by numerical
experiment that the combination of the VFL method with an explicit symplectic time-stepper exhibits no secular drift in
the energy error. This property together with the computational tractability renders this approach suitable for long-time
geophysical simulations.

2 The Free-Lagrange Method

Consider a particle representation of a fluid in whichN2 particles orsites X = {X1, . . . ,XN2} are individually labelled
by α. Each particle is inside a polygon containing the set of points Xβ closer toXα than to any other site. The polygon is
referred to as aVoronoi cell and the set of all these closed cells is theVoronoi diagram. A hexagonal Voronoi cell is shown in
Figure 1 together with the specification of a local index for referring to neighbouring particles.

Thefree-Lagrange method simply uses the particles to represent the material velocity field Uα and the Voronoi diagram to
construct the piecewise constant cellular layer thicknessh̄(Xα, t) from the principle of cell massmα conservation. Discreti-
sation of Hamilton’s action principle for rotating shallowwater with this free-Lagrange fluid representation is the critical step
in deriving a VFL method.
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3 A Variational Free-Lagrange method for 2D Shallow Water

The semi-discrete material description of Hamilton’s action principle for 2d rotating shallow water in a f-plane is expressed in
terms of the particle material velocities and piecewise constant cellular layer thickness.

Definition 3.1 (The Semi-Discrete Hamilton’s Action Principle for Shallow Water)
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Under the f-plane approximation,∇ × R = f0k̂, k̂ is the unit vector in the direction of gravity andf0 is the Coriolis
parameter which is given byf0 = 2|ω|, whereω is the angular velocity of rotation relative to an inertial frame. g is the
gravitation constant,̄bα is the bottom topography, assumed to be piecewise constant over cellα andV is the potential energy.

Stationarity of the discrete action principle gives the semi-discrete Euler-Lagrange particle equations
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α − f0k̂ × Uα, Ẋα = Uα, (2)
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α , ∆lβi
α is the length of the side indexed byβi of cell α and the operator[·]βi
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a scalar quantity at theβth

i edge of cellα as the mean of that quantity over cellα and cellβi.
By preserving symplectic structure, it follows that these semi-discrete Euler-Lagrange particle equations conserveenergy.

A symplectic time-stepper, such as the explicit second order Störmer-Verlet scheme, in particle position and canonical mo-
mentum co-ordinates(Xn
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preserves the symplectic two-formωn =
∑N2

α=1 dXn
α ∧ dPn

α, whereVX denotes the gradient of the potential energy. Conse-
quently, this time-stepper will ensure the absence of secular drift in the energy error of the fully discrete equations over long
simulations as the graph in Figure 2 shows.
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Fig. 1 A hexagonal (ne = 6) Voronoi cell containing the particle with label

α. Each cell edge is of length∆l
βi
α and labelled byβi.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−6

−4

−2

0

2

4

6

8
x 10

−4 Energy Error

t

E−
E 0

Fig. 2 The graph shows the energy error of a 1D simulation over one million
time steps of sizet = 0.01 using128 cells. The shallow water covers a peri-
odic domain[0, 2π) rotating withf0 = 2π and is initialized with a gaussian
perturbation of the layer thickness. The error exhibits no secular drift in energy.
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